Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion.
نویسندگان
چکیده
Phospholipase D (PLD) activity has been linked to proliferation in many cell types including tumor cells. In the present study, we investigated the effects of genetic deletion of PLD1 and PLD2 and of specific PLD1 and PLD2 inhibitors on PLD activity and cell proliferation in primary mouse astrocytes. Basal and stimulated PLD activity was negligible in PLD1/2 double knockouts. PLD activity was significantly reduced in PLD1-deficient cells when fetal calf serum (FCS), insulin-like growth factor 1 (IGF-1) or phorbol ester was used as a stimulant. The specificity of PLD inhibitors VU0359595 and VU0285655-1 at 500nM was confirmed in phorbol ester-stimulated cells. Significant reductions of cell proliferation were observed in PLD-deficient cell lines under basal and stimulated conditions. At 500nM, the PLD1 inhibitor VU0359595 reduced proliferation in PLD2-deficient cells, but also in PLD1-deficient cells stimulated by IGF-1 or phorbol ester. Vice versa, at 500nM, the PLD2 inhibitor VU0285655-1 reduced proliferation in PLD1-deficient cells, but also in PLD2-deficient cells exposed to IGF-1. At 5µM, both inhibitors showed non-specific effects because they inhibited cell proliferation even in PLD1/2 double knockouts. Summarizing, inhibition of PLD occurs in parallel with reduced cell proliferation in astrocytes which are deficient in PLD1 or PLD2. Synthetic PLD inhibitors show high specificity for PLD in low (nanomolar) concentrations, but have additional, non-specific effects on cell proliferation when used at high (micromolar) concentrations.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملFunctional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کاملA review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)
Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...
متن کاملDISTINCT NON-GENOMIC SIGNAL TRANSDUCTION PATHWAYS CONTROLLED BY 17β-ESTRADIOL REGULATE DNA SYNTHESIS AND CYCLIN D1 GENE TRANSCRIPTION IN HepG2 CELLS
Estrogens induce cell proliferation in target tissues by stimulating progression through the G1 phase of the cell cycle. Activation of cyclin D1 gene expression is a critical feature of this hormonal action. The existence of rapid/nongenomic estradiol-regulated protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) signal transduction pathways, their cross talk, and role played ...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 761 شماره
صفحات -
تاریخ انتشار 2015